skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Singh, Astha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recent advances in LLMs offer new opportunities for supporting student writing, particularly through real-time, composition-level feedback. However, for such support to be effective, LLMs need to generate text completions that align with the writer’s internal representation of their developing message, a representation that is often implicit and difficult to observe. This paper investigates the use of eyetracking data, specifically lookback fixations during pauses in text production, as a cue to this internal representation. Using eye movement data from students composing texts, we compare human-generated completions with LLM-generated completions based on prompts that either include or exclude words and sentences fixated during pauses. We find that incorporating lookback fixations enhances human-LLM alignment in generating text completions. These results provide empirical support for generating fixation-aware LLM feedback and lay the foundation for future educational tools that deliver real-time, composition-level feedback grounded in writers’ attention and cognitive processes. 
    more » « less
    Free, publicly-accessible full text available July 31, 2026
  2. Not a day goes by without hearing about the impressive feats of large language models (LLMs), and equally, not a day passes without hearing about their challenges. LLMs are notoriously vulnerable to biases in their dataset, leading to issues such as toxicity, harmful responses, and factual inaccuracies. While domain-adaptive training has been employed to mitigate these issues, these techniques often address all model parameters indiscriminately during the repair process, resulting in poor repair quality and reduced model versatility. In this paper, drawing inspiration from fault localization via program slicing, we introduce a novel dynamic slicing-based intent-aware LLM repair strategy, IRepair. This approach selectively targets the most error-prone sections of the model for repair. Specifically, we propose dynamically slicing the model’s most sensitive layers that require immediate attention, concentrating repair efforts on those areas. This method enables more effective repairs with potentially less impact on the model’s overall versatility by altering a smaller portion of the model. Furthermore, dynamic selection allows for a more nuanced and precise model repair compared to a fixed selection strategy. We evaluated our technique on three models from the GPT2 and GPT-Neo families, with parameters ranging from 800M to 1.6B, in a toxicity mitigation setup. Our results show that IRepair repairs errors 43.6% more effectively while causing 46% less disruption to general performance compared to the closest baseline, direct preference optimization. Our empirical analysis also reveals that errors are more concentrated in a smaller section of the model, with the top 20% of layers exhibiting 773% more error density than the remaining 80%. This highlights the need for selective repair. Additionally, we demonstrate that a dynamic selection approach is essential for addressing errors dispersed throughout the model, ensuring a robust and efficient repair. 
    more » « less
    Free, publicly-accessible full text available June 19, 2026